Аварийный блок питания 5 вольт от 1.2 вольтового аккумулятора

Для аварийного питания применяются батареи аккумуляторов или элементов питания. При длительной непрерывной эксплуатации эта батарея становится самым ненадежным узлом.

С элементами питания проще: раз в полгода выбрасывать старые батарейки и вставлять новые. Хотя это накладно и не гарантирует надежность.

Для батареи аккумуляторов нужно предусмотреть качественное автоматическое зарядное устройство с проверкой состояния и сигнализацией. Вероятность отказа батареи растет в геометрической прогрессии от количества аккумуляторов.

Можно использовать один литиевый (3,6 вольт) аккумулятор. Сделать к нему умное зарядное. По необходимости добавить преобразователь 3,6/5 вольт на МАХ-се. Получится дорогое и, может быть,  качественное устройство.

Основная задача состояла в изготовлении надежного и недорогого аварийного блока питания на одном никель-кадмиевом или никель-металлогидридном аккумуляторе.

Аварийный блок питания 5 вольт от 1.2 вольтового аккумулятора

За полгода было изготовлено десяток конструкций с различными преобразователями и различными зарядными. Микросхем DC/DC, надежно работающих от 1 вольта я не нашел. Из 5-ти преобразователей различного принципа действия только генератор на «древнем» германиевом транзисторе удовлетворил меня по надежности и КПД. На монтажной плате я испытал все ГТ402 и ГТ403, которые нашлись в моем радиохламе. Их оказалось более десятка с разными буквами и разными коэффициентами усиления, но они все отлично работали.

Контролирующе-зарядное устройство хотел сделать попроще: на полевых транзисторах, потом на операционных усилителях, потом на компараторах. Плюс стабилитроны и оптроны и тчательная и долгая настройка. Только с применением микроконтроллера пришло удовлетворение. Пусть МК все проверяет и настраивает. Вот результат на фото.

Его технические характеристики:

  1. Питание: 1,2 вольт — 1 аккумулятор (использовались: NiCd 800mAh, NiMH 170 — 2100mAh.)
  2. Выходное напряжение 4,8В.
  3. Включение в работу при исчезновении сетевого напряжения, не допуская просадку напряжения на выходе ниже 4,5В.
  4. Работать от аккумулятора не менее 20 часов, сигналить 1 раз в 2 минуты о разряде аккумулятора ниже 1 вольта.
  5. Учесть вероятность наличия в сети импульсных помех.
  6. Отключение преобразователя при появлении сети.
  7. Контроль за состоянием аккумулятора:
  • Отсутствует или неисправен – звуковой и световой сигнал каждые 2 минуты.
  • Напряжение ниже 1,28 вольт – зарядить.
  • Заряжать импульсным током: 80мА в течение 1 сек, пауза 25мкс, измерение напряжения. И так повторять до 1,42В. Из множества методов заряда аккумуляторов я выбрал именно такой.
  • После 10 циклов заряда (может через месяц, а может и через пару лет) – 1 принудительный разряд током 40 – 60мА до 1 В.

Схема состоит из экономичного стабилизатора напряжения VR1, ключа включения-выключения зарядки аккумулятора VT1, ключа включения-регулировки-выключения преобразователя напряжения 0,8/5 вольт VT2, генератора на германиевом транзисторе VT3 и трансформаторе Tr1. Микроконтроллер PIC16F676 всем этим управляет и сигнализирует светодиодами о своих действиях.

Схема аварийного блока питания

Наличие сетевого напряжения контролируется сразу после диодного моста делителем напряжения R1 – R2. Если применить другой источник питания (стабилизатор может работать от 7 до 40 вольт) нужно подобрать резисторы так, чтобы на делителе было 4,5 – 4,8 вольт. И это надо проверить еще до установки микроконтроллера в панельку.

HL2 свидетельствует о наличии сети и о нормальной работе стабилизатора напряжения 5v.

О включении заряда сигнализирует белый светодиод HL4. Зарядный ток можно изменить в зависимости от применяемого аккумулятора и мощности сетевого трансформатора подбором резистора R10 и VT2.

Печатная плата аварийного блока питания

Печатная плата выполнена из одностороннего фольгированного стеклотекстолита. Отсек для аккумулятора отрезал от трехэлементного батарейного отсека.

Самым капризным узлом, при повторении схемы, является автогенератор. Но следуя моей методике, основанной на многочисленных экспериментах с разными генераторами и разными комплектующими, у Вас настройка генератора займет десяток минут. На печатную плату сначала установить только те детали, которые указаны на рисунке. 

Временно подключить нагрузку (резистор 560 Ом + светодиод) и переменный резистор 5 кОм для установки и поддержания на коллекторе VT2 напряжения 0,8 вольт. При намотке трансформатора предусмотреть возможность смотать витков 5 и оставить «хвосты», чтобы можно было домотать витков по 5. Подключить аккумулятор, именно аккумулятор, а не какой-либо блок питания. Вместо диодов VD4-5 для наглядности я временно поставил светодиод. Получится вот так:

На выходе должно быть 3-7 вольт. Если напряжение меньше 1,5В нужно поменять у одной из обмоток начало с концом. Выставить 0,8 вольт на коллекторе VT2 (проверять и регулировать при каждом изменении витков). Добавляя или отматывая по 1 витку первичной обмотки  остановится в районе 5 вольт. Теперь, меняя количество витков вторичной обмотки, остановиться на 4,8 вольт. Обмотки я мотал по всему кольцу.

Назначение остальных элементов схемы: VD2 и VD3 – диоды Шоттки из за малого падения 0,2В напряжения — делят питание по +, R12-R15 – ступени регулировки напряжения на выходе VT2, VD4-5 работают как стабилитрон 0,6+0,6=1,2 вольта.

Защита от сетевых помех выполнена программно. Назначение портов микроконтроллера ясно со схемы.

Транзистор VT3 ГТ402 – ГТ403 с любым индексом, с любым коэффициентом усиления. Выбор остальных деталей некритичен.

Стабилизатор напряжения 5В можно собрать на КРЕН-ке вместо LM2575..

Напоминаю, что микроконтроллер PIC16F676 имеет одну особенность: в последнюю ячейку памяти завод-изготовитель записывает поправочный коэффициент частоты. Поэтому программировать нужно в следующем порядке:

  • Вставить мк в программатор и нажать кнопку «читать»
  • По адресу 03FF прочесть и запомнить число. Например: 34АВ.
  • Открыть файл НЕХ программы, которую Вы хотите записать.
  • Найдите и измените значение ячейки по адресу 03FF. Там было 3FFF. Запишите 34АВ.
  • Программируйте.
  •  В ICProg появляется сообщение: «Не … … … Вы настаиваете … … использовать ячейку 3FFF (34AB)? Отвечайте: « Да».
  • В WinPic ничего не спрашивает, записывает нормально.

Два таких блока уже установлены в часы, работают нормально. Но следующий будет с изменением узла контроля выходного напряжения и узла включения заряда и …

Кстати, этот аварийный блок питания неплохо реанимирует аккумуляторы. При наладке для ускорения процесса вставил совсем «дохлый» аккумулятор NiМН-1600 (за 2 секунды он заряжался от 0,5 до 1,42 вольт и саморазряжался до 1 вольта секунды за 3). Проверил все режимы, в том числе и принудительный разряд через 10 циклов заряда. Для проверки теплового режима оставил на ночь. Тепловой режим в порядке, а аккумулятор еще до обеда непрерывно заряжался и набрал емкость процентов 80. При проверке следующего блока для ускоренной проверки этот аккумулятор уже не годился, пришлось взять ЦНК-0,45.

Схема, печатка и НЕХ файл прилагаются.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
МК PIC 8-бит PIC16F676 1
VR1 DC/DC импульсный конвертер LM2575 1
VT1 Биполярный транзистор КТ502А 1
VT2 Биполярный транзистор КТ3107А 1
VT3 Биполярный транзистор ГТ403А 1 ГТ402
VDS Диодный мост DB157 1
VD1-VD5 Диод Шоттки 1N5819 5
VD6 Стабилитрон BZX55C5V1 1 5.1 В
HL1-HL4 Светодиод 4
C1, C3, C5-C7, C11 Конденсатор 100 нФ 6
C2 Электролитический конденсатор 100 мкФ 35 В 1
C4 Электролитический конденсатор 330 мкФ 16 В 1
C8 Электролитический конденсатор 10 мкФ 6.3 В 1
C9 Электролитический конденсатор 10 мкФ 16 В 1
C10 Электролитический конденсатор 330 мкФ 10 В 1
R1 Резистор 6.8 кОм 1
R2, R16 Резистор 3.3 кОм 2
R3-R5 Резистор 370 Ом 3
R6, R11 Резистор 10 кОм 2
R7 Резистор 1 кОм 1
R8 Резистор 100 кОм 1
R9, R12 Резистор 180 Ом 2
R10 Резистор 51 Ом 1 0.5 Вт
R13 Резистор 390 Ом 1
R14 Резистор 680 Ом 1
R15 Резистор 1.2 кОм 1
L1 Дроссель 330 мкГн 1
buzer Пьезоизлучатель 5 В 1
Tr1 Трансформатор 1
Akk1 Аккумулятор AA 1.2 В 1 Ni-Mh
Колодка Для аккумулятора AA 1