Импульсный источник питания для УМЗЧ на IR2153 (300-500Вт)

Представляю вашему вниманию импульсный источник питания для УМЗЧ на популярной микросхеме IR2153. 

Данный блок питания обладает следующими достоинствами:

  • Защита от перегрузок и короткого замыкания как в первичной обмотке импульсного трансформатора, так и во вторичных цепях питания.
  • Схема плавного пуска ИБП.
  • Варистор на входе ИБП защищает от повышение сетевого напряжения выше опасного значения и от подачи на вход 380В.
  • Простая и дешевая схема.

Основные технические характеристики ИБП (характеристики приведены для моего конкретного экземпляра):
Долговременная выходная мощность — 300Вт
Кратковременная выходная мощность — 500Вт
Рабочая частота — 50кГц
Выходное напряжение — 2х35В (можно получить любое необходимое выходное напряжение в зависимости от намотки трансформатора).
КПД — не менее 85% (зависит от трансформатора)

Управляющая часть ИБП является стандартной и взята прямиком из даташита на IR2153. 
Схема ИБП включает в себя так же: защиту от перегрузок и КЗ. Защита может быть настроена на любой необходимый ток срабатывания с помощью подстроечного резистора — R10. О срабатывании защиты свидетельствует свечение светодиода HL1. При активной защите, в аварийном состоянии ИБП может находится сколько угодно долго, при этом он потребляет ток такой же как и на холостом ходу без нагрузки. В моей версии защита настроена на срабатывание при потреблении от ИБП мощности 300Вт и более. Это гарантирует то, что ИБП не будет перегружен и не выйдет из строя в результате перегрева. В качестве датчика тока в данной схеме используются резисторы включенные последовательно с первичной обмоткой импульсного трансформатора. Это позволяет отказаться от трудоемкого процесса намотки токового трансформатора. При КЗ или перегрузке, когда падение напряжения на R11 достигает заданной величины, такой величины при котором на базе VT1 напряжение станет больше 0,6 — 0,7В, сработает защита и питание микросхемы будет шунтировано на землю. Что в свою очередь отключает драйвер и весь БП в целом. Как только перегрузка или КЗ устранено, питание драйвера возобновляется и блок питания продолжает работу в штатном режиме. 

Схема ИБП предусматривает плавный пуск, для этого в ИБП присутствует специальный узел, который ограничивает пусковой ток. Это необходимо для того, чтобы облегчить работу ключам при запуске ИБП. При подключении ИБП в сеть, пусковой ток ограничивается резистором R6. Через данный резистор течет ВЕСЬ ток. Этим током заряжается основная первичная емкость С10 и вторичные емкости. Все это происходит в считанные доли секунд, и когда зарядка завершена и ток потребления снизился до номинального значения, происходит замыкание контактов реле К1 и контакты реле шунтируют R6, тем самым запуская ИБП на полную мощность. Весь процесс занимает не более 1 секунды. Этого времени достаточно чтобы завершились все переходные процессы.

Драйвер запитывается непосредственно от сети, через диод и гасящий резистор, а не после основного выпрямителя от шины +310В как это делают обычно. Такой способ запитки дает нам сразу несколько преимуществ:

1. Снижает мощность рассеиваемую на гасящем резисторе. Что снижает выделение тепла на плате и повышает общий КПД схемы.
2. В отличает от запитки по шине +310В обеспечивает более низкий уровень пульсаций напряжения питания драйвера.

На входе блока питания, сразу после предохранителя установлен варистор. Он служит для защиты от повышения напряжение в сети выше опасного предела. При аварии сопротивление варистора резко падает и происходит короткое замыкание, в следствии которого перегорает предохранитель F1, тем самым размыкая цепь. 

Таким вот образом я тестировал ИБП на полной мощности. 

В качестве нагрузки у меня выступают 4 керамических, проволочных резистора мощностью 25Вт, погруженные в емкость с «кристально чистой» водой. После часа прохождения тока через такую воду все примеси всплывают наверх и чистая вода превращается в бурую, ржавую жижу. Вода усиленно испарялась и за час испытаний нагрелась практически до кипения. Вода необходима для отвода тепла от мощных резисторов, если кто не понял.

Трансформатор в моем варианте ИБП, намотан на сердечнике EPCOS ETD29. Первичная обмотка проводом 0,8мм2, 46 витков в два слоя. Все четыре вторичные обмотки намотаны тем же проводом в один слой по 12 витков. Может показаться, что сечение провода не достаточно, но это не так. Для работы этого ИБП на питание УМЗЧ этого достаточно, так как средняя потребляемая мощность значительно ниже максимальной, а кратковременные пики тока ИБП без труда отрабатывает за счет емкостей питания. При долговременной работе на резистор, при выходной мощности 200Вт, температура трансформатора не превысила 45 градусов.

Для увеличения выходного напряжение более 45В необходимо заменить выходные диоды VD5 VD6 на более высоковольтные. 

Для увеличение выходной мощности необходимо использовать сердечник с большей габаритной мощностью и обмотками, намотанными проводом большего сечения. Для установки другого трансформатора придется изменить рисунок печатной платы.

Внимание! При покупке IRF740 необходимо быть крайне внимательным чтобы не нарваться на подделку, которые встречаются очень часто, особенно на Aliexpress, для этого важно знать как выглядит поддельный IRF740.

На иллюстрации сверху, показаны два вида оригинальных IRF740 производства Vishay и производства IR, а также типичная подделка, которая часто встречается на Aliexpress и в других магазинах. 

Кроме внешнего вида, подделку от оригинала легко отличить с помощью транзистор-тестера:

Если установить в панельку транзистор-тестера оригинальный транзистор, то отображаемое значение емкость будет: C=2,6…2,7 нФ. Подделки имеют гораздо меньший кристалл, чем оригинальный транзистор и поэтому транзистор-тестер, в случае установки в него поддельного транзистора, выдаст другое — меньшее значение емкости: C=0,9…1,5 нФ. Постойте, но ведь в даташите IRF740 указана емкость 1,4 нФ, почему тогда оригинал должен иметь емкость около 2,7 нФ ? Подобный вопрос обязательно должен у кого-нибудь возникнуть. Отвечаю. Емкость указанная в даташите измерена при совершенно других условиях (напряжение затвор-исток = 0 В, напряжение сток-исток = 25 В, частота = 1 МГц), отличных от тех, при которых измеряет емкость транзистор-тестер, поэтому сравнивать значение емкостей из транзистор-тестера и даташита —  просто бессмысленно. 

И последнее. Кто-то наверняка сказал: ну и что, что не оригинал, зато дешевле, какая разница?! Хорошо, если бы разница была только в цене, но нет! Оригинальный транзистор — это транзистор, который соответствует всем заявленным производителем параметрам из даташита. Поддельный транзистор — это транзистор, который не соответствует никаким параметрам. По сути, подделка — это другой транзистор. Подделка, на которой написано «IRF740», по своим параметрам может являться чем угодно, но только не IRF740. Часто подделка — это другой, более дешевый и маломощный транзистор, перемаркированный под другой, более дорогой транзистор. Другими словами, по-простому, если собрав ИИП на оригинальных IRF740 вы сможете легко и непринужденно, долговременно снять 300 Вт мощности, а кратковременно и того больше, то собрав тот же ИИП на поддельных «IRF740», вы можете получить фейерверк при попытке снять более 100 Вт, а иногда даже при первом же включении. 

Печатная плата в готовом виде выглядит так (выполнено ЛУТом):

Размеры платы 188х88мм. Текстолит я использовал с толстой медью — 50мкм, вместо стандартных 35мкм. Можно использовать медь стандартной толщины. В любом случае не забывайте хорошенько пролудить дорожки.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Драйвер питания и MOSFET IR2153D 1
VT1 Биполярный транзистор 2N5551 1
VT2 Биполярный транзистор 2N5401 1
VT3 Биполярный транзистор KSP13 1 Или MPSA13
VT4, VT5 MOSFET-транзистор IRF740 2
VD1 Стабилитрон 1N4743A 1 13В 1.3Вт
VD2, VD4 Выпрямительный диод HER108 2 Или другой быстрый диод
VD3 Выпрямительный диод 1N4148 1
VD5, VD6 Диод Шоттки MBR20100CT 2 Или другой на соответствующее напряжение и ток
VDS1 Выпрямительный диод 1N4007 4
VDS2 Диодный мост RS607 1
VDR1 Варистор MYG14-431 1
HL1 Светодиод Красный 5мм 1 Только красный! Другие цвета не допустимы!
K1 Реле TIANBO HJR-3FF-S-Z 1 Катушка 12В 400Ом
R1 Резистор 0,25Вт 8.2 кОм 1
R2 Резистор 2Вт 18 кОм 1
R3 Резистор 0,25Вт 100 Ом 1
R5 Резистор 0,25Вт 47 кОм 1
R6 Резистор 2Вт 22 Ом 1
R4, R7 Резистор 0,25Вт 15 кОм 2
R8, R9 Резистор 0,25Вт 33 Ом 2
R10 Резистор подстроечный 3.3 кОм 1 Многооборотный
R11, R11 Резистор 2Вт 0.2 Ом 2
С1, С3, С17, С18 Конденсатор неполярный 100 нФ х 400В Х2 4
С2 Конденсатор неполярный 470 нФ х 400В 1
C4, C5, C7 Электролит 220 мкФ х 16В 3
С6, C8 Конденсатор неполярный 1 нФ 2 Керамические
С9 Конденсатор неполярный 680 нФ 1 Керамический
С10 Электролит 330 мкФ х 400В 1
С11, С12 Конденсатор неполярный 1 мкФ х 400В 2
С13, С14, С15, C16 Электролит 1000 мкФ х 63В 4