ЖКИ дисплей показаний двух расходомеров

Рассматривается реализация дисплея данных с частотных выходов расходомеров для воды фирмы «Взлет» отечественного производства, один из которых рассчитан на условный проход 25мм, а другой на условный проход 60мм. В качестве первичного источника информации использованы частотные выходы данных расходомеров. Вывод осуществляется как мгновенного расхода в (м**3/час), так и суммарного (в М**3)расхода одновременно для обоих расходомеров. При отключении питания все выводимые данные автоматически записываются в энергонезависимую память приборы и восстанавливаются в ОЗУ микроконтроллера при повторном включении прибора. В качестве LCD индикатора для дисплея использован LCD марки WH1602D-NGG с известной системой команд от фирмы Hitachi.   

Следует отметить следующие преимущества использования частотного выхода (ЧВ) расходомера перед использованием RS485 или токового выхода:

  1. Данный тип выходного сигнала имеет место практически на всех видах расходомеров, включая самые простые такие как турбинные или крыльчатые.
  2. ЧВ наименее подвержен воздействию помех и наводок от силовых цепей, поскольку потеря нескольких импульсов слабо влияет на достоверность передаваемых расходомером данных.
  3. Для частотного выхода, как правило, предусмотрена гальваническая развязка в виде встроенной оптопары, что защищает прибор от попадания посторонних напряжений и не влияет на достоверность передаваемых данных
  4. Частотный сигнал достаточно легко преобразуется в ток диапазона 4-20мА для подключения к АЦП аналогового ввода микроконтроллера или ПЛК.


Рис 1.

Принципиальная схема прибора показана на рис 1 

По сути, данный прибор является двухканальным частотомером. Калибровочные коэффициенты для перевода значений частоты в показания расхода были получены экспериментально и занесены в программу микроконтроллера прибора. Для простоты реализации, в качестве опорного генератора секундных интервалов была использована отечественная микросхема  D3 типа КР175ИЕ5. Принцип работы этой микросхемы и схема включения подробно описаны в литературе [1]. Причиной ее использования явилось желание экономии одного из аппаратных таймеров-счетчиков микроконтроллера с целью упрощения программы.   Именно её применение делает данный прибор двухканальным частотомером, а  вырабатываемые ею кварцеванные секундные интервалы служат для подсчета импульсов с частотных выходов обоих расходомеров одновременно. Эти выходы подключены, через цепочки защитных диодов VD1—VD4, которые не допускают появления на входах PB0 и PB1  микроконтроллера ATMega8515 опасных напряжений из внешних цепей. Эти входы сконфигурированы как источники тактовых импульсов для таймеров-счетчиков микроконтроллера Т0 и Т1 соответственно. Естественно, что данные таймеры – счетчики настроены для работы от внешнего тактируемого сигнала. Их содержимое подсчитывается по прерыванию INT1, ежесекундно и обнуляется для выполнения последующих подсчетов. Далее программа выполняет коррекцию значения измеренной частоты с целью преобразования значений частоты в значения расхода и вывод  этих показаний на верхнюю строчку ЖКИ. Каждый отсчет суммируется ежесекундно со значением суммарного расхода, которое, также, подлежит сохранению в EEPROM микроконтроллера и выводу на вторую строку ЖКИ.

По сигналу прерывания INT0 (сразу по пропаданию напряжения питания 9—24В) происходит запись отображаемых на дисплее данных в энергонезависимую память микроконтроллера.


Фото 1 

На фото 1 показан внешний вид прибора при отображении данных. В качестве корпуса для устройства применен корпус под автоматические выключатели подходящего размера.

В качестве прототипа схемы была использована плата AVR-P40B-8515 [4]  от Olimex.

На фото 2 показан вид платы со стороны установки компонентов.


Фото 2

На схеме (Рис. 1) не показаны те элементы платы, которые характерны для микроконтроллера типа AT90S8515 AVR, под который эта плата изначально была разработана (напр. драйвер питания). Прибор оборудован интерфейсом последовательного обмена типа RS232, который, в данном проекте не задействован, однако, обеспечивает необходимую гибкость при адаптации данного прибора под другие типы расходомеров с частотным выводом данных. Именно через него можно, достаточно оперативно, обновлять калибровочные коэффициенты, используя для этой цели даже терминальную программу на ПК. Немаловажно и то, что данные с расходомеров, по этому же каналу, могут быть доставлены, в реальном времени, на удаленный терминал.

Прошивка микроконтроллера приведена во вложении. Фьюз-биты (Fuses) оставлены заводскими.

Литература:

  1. Бирюков С.А. – Цифровые устройства на МОП интегральных микросхемах, М. :Радио и связь,1991.-184с
  2. Практическое программирование микроконтроллеров Atmel AVR на языке ассемблера. 2-е изд., испр.Автор: Ревич Ю.В.
  3. 8 bit microcontroller with 8Kb Flash Data Sheet ATMEGA8515 Atmel
  4. http://www.olimex.com/dev AVR-P40B-8515 PROTOTYPE BOARD WITH 10 PIN ICSP CONNECTOR FOR AT90S8515 AVR MICROCONTROLLERS

Автор выражает благодарность компании  ООО «ЭВС» за содействие в реализации данного проекта.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
D1 МК AVR 8-бит ATmega8515 1
D2 ИС RS-232 интерфейса MAX232 1
D3 Микросхема КР176ИЕ5 1
U Линейный регулятор LM7805 1
VD1-VD4 Диод 4
VD5 Стабилитрон 5.1 В 1
VD6 Выпрямительный диод 1N4007 1
С1 Конденсатор 1 мкФ 1
С2-С5 Электролитический конденсатор 4.7 мкФ 4
С6 Конденсатор 22 пФ 1
С7 Конденсатор 62 пФ 1
С8 Электролитический конденсатор 100 мкФ 16 В 1
С9 Электролитический конденсатор 220 мкФ 25 В 1
R1 Подстроечный резистор 10 кОм 1
R2-R4 Резистор 4.7 кОм 3
R5 Резистор 10 кОм 1
R6 Резистор 560 кОм 1
R7 Резистор 22 МОм 1
R8 Резистор 47 кОм 1
Х1 Кварцевый резонатор 32768 Гц 1
J Разьем com-порта RS-232 1
J1 LCD-дисплей WH1602D-HGG 1
J2 Разьем для программатора ICP 1
Разьем для подключения блока питания 1