Двигатель и контроллер для электросамоката своими руками

В этой статье я расскажу как в домашних условиях сделать мощный двигатель для самоката или детского электромобиля с высоким КПД и простой контроллер к нему.

UPD 28.06.2020 ——————————>

Вот что в итоге получилось: двигатель описанный в статье ниже без изменений, добавил регулируемый источник питания и курок газа, маленькая батарея в сумочке на руле 8S1P 2,5 А·ч (быстро заменяемая, можно брать несколько с собой, одной такой батареи хватает на 9-12км на средней скорости)

Расход батареи зависит от скорости, прилагаю таблицу расхода энергии для моего веса 85 кг:

Контроллер сейчас полный мост 4 транзистора IRFB4110 установленных без радиаторов, регулируемый источник питания выдает на этот мост напряжение от 25 до 70В при 24-33В на входе с кпд более 93%. Общий кпд системы получился на уровне 80-85% (включая потери на батарее проводах контроллере и двигателе).

<———————— UPD 28.06.2020

 

Первое что вас шокирует это то, что в этом двигателе не будет железа. Не нужно нарезать пластины статора или ротора на лазерном оборудовании, собирать в пакеты и подгонять всю конструкцию к микронной точности. Это обычно мешает обычным людям создавать самим двигатели. Вы удивитесь насколько проста конструкция и не поверите полученным от нее характеристикам.

Обычно вбивая в поиск на ютубе например «электродвигатель своими руками» вы видите катушку и магнит и это вращается и все знают, что да это работает, но кпд там ничтожный и нормальную тягу создать не может. Но, все ошибаются, на самом деле используя правильно катушку и магнит можно сделать мощный двигатель с высоким кпд.

С чего все начиналось. Когда-то просматривая патенты на двигатели я обратил внимание на двигатель из катушки внутри которой вращался длинный магнитный стержень закрепленный на валу, такая конструкция не приобрела распространение по причине низкого кпд из за слабых магнитов которые были в то время и немного неправильной конструкции. Забегая наперед скажу какой должна быть идеальная конструкция двигателя — магнит сферической формы закрепленный на оси полюсами перпендикулярно оси вокруг него располагается круглая катушка квадратного сечения (через нее проходит ось поэтому можно ее разделить на 2 части и разместить ближе к оси) — все — конструкция готова, остается закрепить все в корпусе и получится двухтактный двигатель. Правда найти такой магнит в продаже мне еще не удавалось но если все начнут делать такие двигатели то скоро появятся.

Сейчас в продаже есть магниты цилиндры диаметрально намагниченные с отверстием по оси, они почти идеально подходят (лучше на сейчас нету), стоят они в общем не дешево но все равно дешевле готовых двигателей раза в 2-5, самые крупные внутри катушки с током (15А 100-200 витков) руками не провернуть уже (за магнит не за ось, а за ось и плоскогубцами не провернуть). Первое опасение мое было когда я запускал такой двигатель на самокате — было, не порвет ли он случайно зубчатый ремень при старте. То-есть понимаете что это уже не те игрушечные двигатели с катушкой и магнитом что вы видите на ютубе.

 

Теперь о КПД, оказалось все очень просто и предсказуемо, когда магнит цилиндр (сфера) повернут полюсами к виткам катушки то сила магнитного поля действует на магнит по касательной то-есть перпендикулярно к радиусу создавая максимальный вращательный момент а когда он повернут полюсами по оси катушки то момент равен нулю а это означает что в таком положении если подать на катушку ток он весь 100% пойдет в нагрев и кпд вращения = 0%, а когда он повернут полюсами к катушке то кпд максимум и зависит от установившегося тока при определенной нагрузке. Например если в этой точке при напряжении питания 10в установился ток 1А то полное сопротивление (активное + реактивное) = 10 Ом и если при этом сопротивление самой обмотки 1 Ом то кпд в той точке 90% (ну и соответственно если сопротивление обмотки 0,1 Ом то кпд 99%). Вывод — обмотка должна быть с как можно меньшим сопротивлением и запитывать ее нужно в тех точках где кпд максимальный их однозначно нельзя запитывать когда магнит повернут вдоль оси или почти вдоль оси так как это 90-100% потери (нагрев). И в этом можно убедится если собрать простой драйвер на 2х ключах (схема в конце статьи) и подать управление от микросхемы с почти любого куллера с 4мы выводами (контроллер управления куллером с встроенным датчиком холла и 2мя выходами которые обычно подключают напрямую к обмоткам). КПД будет на уровне 55% (максимум 72,2% минус потери на сопротивлении зависит от нагрузки на двигатель). Вы уже наверно поняли как нужно повышать КПД, сокращать угол запитки со 180 град до 90 — 45 — 30 — 15, чем меньше тем кпд ближе к 100% но снижается тяга. Где разумный предел, получается при 180 угле потребляем 100 вт отдаем в нагрузку 50-70 вт, если сократить угол до 90 то потребляем 50 вт а отдаем в нагрузку 37 — 44 — (максимум 89,97% — потери) кпд выше но отдаваемая мощность ниже при том же напряжении питания, 120 град (будет аналогично 3хфазному теоретический максимум 86% — потери на активном сопротивлении). Нужен двигатель с большой равномерной тягой и кпд 95%? Запросто — берете 6 магнитов на одну ось со смещением угла катушек или магнитов по 30град получаем 6ти фазный 12 тактный двигатель (аналог 12 цилиндровому двс) с кпд до 97.2% который также можно перепрограммировать на любой другой угол фазы и жертвуя кпд поднимать тягу еще в 2-3 раза при необходимости. 

Эскиз ниже показывает конструкцию двигателя и размещение датчиков холла (в примере датчики холла разведены от середины катушки на угол 45 градусов что дает 90 градусов угол запитки обмоток, когда полюса магнита находятся максимально близко к виткам катушки)

Мой двигатель однофазный двухтактный с углом запитки 110 град выдал кпд 87% на скорости 13 км/ч с нагрузкой 92 кг по ровной дороге при этом обмотки заклеенные в закрытом деревянном корпусе за час непрерывной езды нагрелись аж до 41 градуса при среднем потреблении двигателя 88 Вт. Две обмотки по 125 витков в параллель проводом диаметром 0,83 мм, магнит 65 диаметром, 30 высота, внутренний 18 мм ссылка. В сумме меди 260 грамм из расчета на 260 Вт. Мой вес 85 кг (самокат 8кг с двигателем и батареей, легче только из карбона), питание 10х Samsung INR18650-25R = 87 Вт/час (42В максимум с отводом от середины, 2.5 А/ч) мне полного заряда хватает на ~15 км по ровной дороге.

Изначально использовался 1 датчик холла (но я уже тогда знал что это большие потери так как делал такие двигатели и раньше), так двигатель на холостом ходу потреблял 42 Вт (1 А на каждую половину батареи, итого 2*21 или 1*42) и за 2 минуты нагревался до 50 градусов (это без нагрузки), установка 2х датчиков холла снизила ток холостого хода в 10 раз! и он составил 100 мА (4,2 Вт) и греться он перестал. На максимальной нагрузке (езда в горку) ток достигал 6 ампер (>250 Вт) и обмотка разогревалась так что больше пары минут нельзя было ездить а после установки 2х датчиков холла и подачи питания на обмотки только в нужные моменты, согласно рисунку выше, полностью решило проблему перегрева (значительно подняло кпд) и ток при заезде на ту же горку упал в 2 раза (130 Вт)

И так магниты с катушками запакованы в корпус, вал (болт М6 100мм на котором гайками с бортиком, зажимные для колес, через шайбу и резиновую прокладку зафиксирован магнит) закреплен в немагнитных стальных подшипниках (это в идеале, но я использовал обычные дешевые стальные но сила магнитного поля такая что крутятся они с трудом, поэтому лучше сразу нержавейку ставить) и самое главное как его теперь запустить. Я использовал самый простой вариант одна катушка и один магнит — самый дешевый вариант и для самоката подходит идеально, естественно так как запитываем только 90 — 120 градусов сектор на такт то остается незаполненные тягой сектора и стартовать такой двигатель будет с толчка, но это же не вентилятор а двигатель для самоката, оттолкнулся, включил двигатель и поехал, все просто. Если же нужен автопуск то минимум нужно делать 2х фазный 4х тактный, такой поставил в детском автомобиле.

Контроллер

Фраза «шим регуляция» у меня ассоциируется с потерями, запитывать нужно постоянным током чтобы избежать потерь переключения на ключах и не греть диоды в ключах, в общем контроллер может работать с кпд 97% и выше если забыть про шим, а скорость лучше регулировать напряжением питания (например у меня в самокате она фиксированная 13 — 18 км/ч в зависимости от веса ездока). Запитка обмотки двумя тактами возможна или мостом но тогда потери всегда на 2х ключах или полумостом с питанием с отводом от средней точки, выбран именно такой вариант так как в 2 раза уменьшает потери на ключах (всегда катушка включена только через 1 ключ). Еще из плюсов такого полумоста то что обратная эдс при отключении катушки сливается через 1 диод в противоположное плечо и потери на диодах тоже в 2 раза меньше то-есть больше энергии вернется в конденсатор / аккумулятор так же и с рекуперации от скатывания с горки. В итоге получаем полумост + драйвер полумоста + схема управления.

Схема управления

Использование одного датчика хола не дает возможность управлять углом в котором запитывается обмотка, поэтому нужно минимум 2 датчика расположенные таким образом чтоб получать включение обмоток в нужном диапазоне, проще всего сделать угол 90 град (для этого нужно разнести датчики на 45 градусов от витков катушки в обе стороны) тогда пары датчиков хватит на 4 такта (используем только 2 из них для однофазного) . Каждый датчик возвращает 2 позиции которые означают видит ли он северный или южный полюс, так вот когда оба видят северный включаем один ключ, когда оба видят южный второй, при использовании микросхем от куллера — реализуется логикой 2или-не, на входы двух логических элементов подается питание через сопротивления на выходах при этом 0, микросхемы куллера коммутируют входы логических элементов на ноль, когда оба входа на нуле на выходе 1 — включается 1 ключ, и так же когда на втором логическом элементе оба входа на нуле включается другой ключ. Все просто. Учитывайте при выборе микросхемы драйвера куллера (датчик холла) что они есть с защитой от остановки и без, для двигателя поддержки как у меня на самокате лучше использовать с защитой он запустится только при начале езды, но для двигателя который должен стартовать сам нужно выбирать без защиты и делать ее если необходима другим способом (защита от перегрузки по току например).

Микросхем логики у меня не было потому заменил транзисторами. Схема подключения драйвера мосфетов по даташиту.


 

Отладка двигателя

Хочу отметить важные моменты которые уберегут детали контроллера от случайного выжигания. Дело в том что обратная эдс с катушки очень коварная штука, она может спалить всю электронику и драйвер и микросхемы с датчиком холла. Для предотвращения таких ситуаций обязательно должны стоять конденсаторы по входу питания в которые сливается обратная эдс с катушки (через защитные диоды в мосфетах) при случайном отключении батареи, минимум 1000 мкф 50В с низким esr. Также для предотвращения попадания выбросов высокого напряжения на выход драйвера через обратную емкость мосфета, обязательно в цепи затвор исток должен стоять стабилитрон на 13-15В (что ниже допустимого напряжения затвора 20В но выше управляющего напряжения с драйвера 12В).

При первом включении обмотку лучше подключать через сопротивление ограничивающее максимальный ток (10-50 Ом), переворотом датчиков холла добиваемся вращения в нужную сторону. Также перемещая датчики можно найти позиции где потребление на холостом ходу будет минимальным и работа двигателя тихой. Сильно уменьшать угол запитки не стоит (< 90 град) для двухтактного двигателя, хоть потребление будет и ниже на холостом но создать достаточную тягу будет сложнее так как в меньшие промежутки времени придется вложить больше мощности а это дополнительные потери на контролере и батарее.

Цена

  • болт (вал), гайки и шайбы (фиксация магнита и подшипников), немагнитные шурупы (нержавейка, для скручивания корпуса) < 2$
  • корпус (брус 1,5м х 80 х 20) = 1,3$
  • зубчатые колеса и ремень = 8$
  • магнит = 50$
  • платы и все детали < 10$
  • 10х Samsung INR18650-25R = 38$

Итого, электрификация самоката обошлась в ~110$

 

Плюсы и минусы

Плюсы:

  • двигатель вращается без какого либо сопротивления, что не мешает поездке на самокате как на обычном при отключенном питании
  • малый вес
  • цена
  • высокая эффективность

Минусы:

  • нельзя устанавливать такой двигатель вблизи магнитных материалов (приведет к залипанию ротора, использование в корпусе железных болтов тоже недопустимо, только нержавейка или клей)
  • нельзя устанавливать очень близко с массивными токопроводящими материалами (торможение вихревыми токами, идеально использовать раму из пластика, дерева, карбона тогда можно ставить где угодно)
  • придумайте и напишите в комментариях (низкая скорость не катит, можно поднять напряжение, меня устраивает скорость для езды по пешеходным дорожкам)
  •  

Больше фото

Прижатие ремня для большего сцепления с зубчатым колесом

Первые включения (еще с 1 датчиком холла и пониженным напряжением питания 2х8В) максимальная скорость 3-5 км/ч

Настройка положения датчиков (катаемся, меряем потребление, переклеиваем датчик холла ищем оптимальный вариант) на фото оптимальный