При ремонте или испытании компьютерных блоков питания ATX часто возникает необходимость оценить их нагрузочные характеристики, такие как допустимые отклонения выходных напряжений, уровень пульсаций и конечно же максимальную выходную мощность. Без специального оборудования, в виде эквивалента нагрузки, осциллографа и некоторых других устройств протестировать соответствие стандарту характеристик, указанных производителем на наклейке блока питания крайне сложно. Одни создают специальные стенды, другие пользуются набором автомобильных ламп, третьи используют мощные проволочные резисторы в качестве нагрузочного эквивалента. Его сопротивление у большинства тестеров неизменно и не подбирается специально для каждого испытуемого блока, поэтому функциональность таких приборов ограничена. Мне хотелось сделать простое, но универсальное устройство, позволяющее полуавтоматически устанавливать требуемую нагрузку на шины +5V, +12V, +3,3V, одновременно измеряя соответствующие выходные напряжения и контролируя допустимый уровень их отклонений.
Таким образом был разработан и изготовлен прибор, состоящий из ступенчатого блока нагрузок, модуля управления включением этих нагрузок и платы тестера напряжений компьютерных БП (POWER SUPPLY TESTER), с которой были выпаяны разъемы и нагрузочные резисторы.
Блок нагрузок для каждого канала выходных напряжений 3,3V, 5V и 12V состоит из семи 10-ти ваттных цементных резисторов одинакового сопротивления, один из которых включен постоянно, а остальные шесть подключаются через MOSFET-транзисторы, выступающие в роли электронных ключей. Их поочерёдным открытием и закрытием управляет микросхема LM3914, которая применяется в светодиодных индикаторах с линейной шкалой. Она включена в режиме «столбик». Регулируя переменный резистор, происходит ступенчатое изменение уровня на выходах микросхемы, а значит и поочерёдное открытие или закрытие MOSFETов, которое контролируется загоревшимися светодиодами. Схема включения LM3914 выполнена так, чтобы можно было осуществлять регулировку от минимума (при котором не горит ни один светодиод и все MOSFETы закрыты, но включен один постоянный резистор), до максимума (при котором загораются все шесть светодиодов, MOSFETы открыты и все семь нагрузочных резисторов становятся подсоединенными параллельно). Для отдельной регулировки по каждому каналу использовано три таких модуля на LM3914. Слаботочные линии -5V, -12V и дежурного +5V SB нагружены постоянными маломощными сопротивлениями.
После подключения блока питания ATX к разъемам прибора и включении в сеть, должен загореться фиолетовый светодиод контроля дежурного напряжения +5В_SB. Поскольку этим напряжением питаются и микросхемы LM3914, требуемую нагрузку для каждого канала можно установить как перед запуском БП, так и во время работы, ориентируясь по светодиодным индикаторам.
Запускается тестируемый блок питания кратковременным нажатием кнопки S1, пока в цепи не появится сигнал «Power Good» и не откроется транзистор VT1, который зашунтирует кнопку, о чем будет сигнализировать загорание зелёного светодиода “PG”. Время задержки появления сигнала “PG” будет отображено на дисплее индикатора выходных напряжений. После этого должен заработать кулер и засветиться все светодиоды наличия выходных напряжений. Выключение осуществляется нажатием кнопки SB2. Ее контакты зашунтируют эмиттерный переход транзистора VT1, и он закроется, разомкнув цепь включения блока.
Какой уровень индикаторов выставить для каждого канала определяется исходя из нижеприведённых расчетов. Зная общее сопротивление резисторов при параллельном включении к каждой шине, можно рассчитать какая сила тока будет протекать через нагрузку и какой будет выходная мощность по каждому каналу выходных напряжений 3,3V, 5V и 12V.
Таким образом можно проводить тестирование с различными вариантами нагрузок, причем желательно, чтобы их общая суммарная мощность не превышала 100 процентов максимальной выходной мощности БП. Выход за пределы, в лучшем случае, может привести к срабатыванию защиты от перегрузки по току, а в худшем – к выходу из строя проверяемого блока питания. Всегда нужно обращать внимание и на допустимую комбинацию нагрузок по каждой линии, чтобы не допустить перекос напряжений, возникающий из-за неравномерного их распределения по шинам.
Повышая ток нагрузки контролируется снижение значений выходных напряжений, максимально допустимые отклонения которых не должны превышать 5% от номинала.
Для подключения испытуемого блока питания к тестеру была сделана внешняя плата, на которую припаяны 24-х контактный разъем для питания материнской платы, 4-х контактный разъем питания процессора, 6-ти контактный – для дополнительного питания видеокарты, SATA и Molex – для подключения жестких дисков и оптических приводов.
Тестер выполнен в стандартном корпусе блока питания ATX. В нижней части корпуса на посадочные места устанавливается плата нагрузок с ключами. На нагрузочные резисторы через термопасту по всей площади устанавливается радиатор размерами 130х110х45, который крепится к плате и обдувается родным кулером. Плата с микросхемами управления и светодиодами индикации включения нагрузок и состояний всех линий (+5V_Standy (дежурное), PowerGood, +3.3V, +5V, +12V, -12V, -5V (для старых БП)), а также тактовыми кнопками включения и выключения расположена в верхней части корпуса, который специально для удобств выбран с уже имеющимися для них отверстиями. Понадобилось только выпилить место под экран тестера напряжений. Цвет индикаторных светодиодов, а также светодиодов наличия напряжения на линиях, подобран в соответствии со стандартными цветами проводов блока питания.
Печатные платы выполнены в программе Sprint-Layout 6.0.
В качестве ключей подойдут любые n-канальные MOSFET-транзисторы в корпусе TO252, взятые с материнских плат.
Также необходимо не забыть вывести провода для подключения платы индикации выходных напряжений к соответствующим выводам, откуда были выпаяны разъёмы.
Выдает ли свои чистые 500 Ватт качественный блок питания известного бренда с сертификацией «80 Plus» или недорогой бюджетный блок питания с небольшим весом? Этим прибором с успехом удаётся проверить.